Adobe Animate Dynamic Text

Hello how are you, i have this problem in a dynamic text i want numbers to appear from a simple sum, my code is this Var sum: Number = 1; var counter: Number; counter = sum +1; Text.text = ' + counter; but it doesn't appear in the dynamic text and the instance of the dynamic text is called Text. The Essential Graphics Panel in Premiere Pro offers a range of pre-animated text templates, which you can customize in various ways. In the Graphics tab, open the Essential Graphics Panel. Browse the title templates until you find one you like. Drag and drop it to your timeline, and place above the clip you wish it to appear on.

Use this glossary to learn about the various elements used in creating animations.

A symbol is a graphic, button, or movie clip that you create once in the Animate authoring environment or by using the SimpleButton (AS 3.0) and MovieClip classes. You can then reuse the symbol throughout your document or in other documents.

A symbol can include artwork that you import from another application. Any symbol that you create automatically becomes part of the library for the current document.

An instance is a copy of a symbol located on the Stage or nested inside another symbol. An instance can be different from its parent symbol in color, size, and function. Editing the symbol updates all of its instances, but applying effects to an instance of a symbol updates only that instance.

Use movie clip symbols to create reusable pieces of animation in Adobe Animate. Movie clips have their own multiframe timeline that is independent from the main movie's Timeline—think of movie clips as mini-timelines nested inside a main Timeline that can contain interactive controls, sounds, and even other movie clip instances.

Rar file installer for pc. WinRAR is a powerful archiver extractor tool, and can open all popular file formats. RAR and WinRAR are Windows 10 (TM) compatible; available in over 50 languages and in both 32-bit and 64-bit; compatible with several operating systems (OS), and it is the only compression software that can work with Unicode. Official WinRAR / RAR publisher; WinRAR Download, support, FAQ, tips, tricks and tools for WinRAR, RAR and ZIP creation. It also supports CAB, ARJ, LZH, TAR, Gzip, UUE, ISO, BZIP2, Z and 7-Zip WinRAR - the data compression, encryption and archiving tool for Windows that opens RAR and ZIP files.

You can also place movie clip instances inside the timeline of a button symbol to create animated buttons. In addition, movie clips are scriptable with ActionScript.

For more information on Movie Clips, read the article on Working with scenes in Animate and watch the video tutorial on Creating bone tool animations.

Adobe animate change dynamic text

Graphic symbol is a collection of frames used in animations or single frame mode. An animated graphic symbol is tied to the Timeline of the document in which the symbol is placed.

In contrast, a movie clip symbol has its own independent Timeline. Animated graphic symbols, because they use the same Timeline as the main document, display their animation in document-editing mode.

Use graphic symbols for static images and to create reusable pieces of animation that are tied to the main Timeline. Interactive controls and sounds won’t work in a graphic symbol’s animation sequence. Graphic symbols add less to the FLA file size than buttons or movie clips because they have no timeline.

Click the link to read more about 3D graphics in Animate.

Button symbols are a special type of four-frame interactive movie clip in Adobe Animate. When you select the button type when creating a symbol, Animate creates a Timeline with four frames. The first three frames display the button's three possible states: Up, Over, and Down; the fourth frame defines the active area of the button.

The button symbol timeline doesn't actually play linearly like a normal timeline; it reacts to mouse pointer movement and actions by jumping to the appropriate frame.To make a button interactive, place an instance of the button symbol on the Stage and assign actions to the instance.

You assign the actions to the root timeline of the Animate file. If the button is inside a movie clip, you can add the actions to the movie clip's timeline. Do not add actions to the timeline of the button symbol.

For more information about buttons, see Creating buttons using Animate.

The Oval and Rectangle tools let you create these basic geometric shapes, and apply strokes, fills, and specify rounded corners. In addition to the Merge and Object drawing modes, the Oval and Rectangle tools also provide the Primitive Object drawing mode.

When you create rectangles or ovals using the Rectangle Primitive or Oval Primitive tools, Animate draws the shapes as separate objects. These shapes unlike the shapes you create using Object Drawing mode. The primitive shape tools let you specify the corner radius of rectangles using controls in the Property inspector.

To learn how to create basic lines and shapes, see Drawing lines and shapes using Animate and Drawing and creating objects in Animate.

When you draw vector graphics in Adobe Animate with the Object Drawing mode enabled at the bottom of the Tools panel, you create shapes referred to as drawing objects. These are separate graphic objects that do not automatically merge together when overlaid on other objects.

By choosing Object Drawing mode, you can overlap shapes on the same layer without altering their appearance if you move them apart, reposition, or rearrange their appearance.

In an Object Drawing mode, Animate creates each shape as a separate object that you can individually manipulate, similar to when objects are grouped.When a drawing tool is in Object Drawing mode, the shapes you create with it are self-contained. The stroke and fill of a shape are not separate elements, and shapes that overlap do not alter one another. When you select a shape created using Object Drawing mode, the shape displays a rectangular bounding box to identify it.

See Draw and create objects in Animate and Draw lines and shapes using Animate to view detailed information on drawing objects.

Bitmap graphics are generally used to display photographic content, such as images captured with a digital camera. These files display individual pixels that contain unique color values; when viewed together, the pixels comprise the photo or image.

Bitmap graphics should not be scaled. If you want to import bitmap graphics into Animate, use an image-editing program to resize and optimize them prior to bringing them in. When you scale bitmap graphics, you lose pixel data and the quality of the image can be compromised. Convert imported bitmap graphics into symbols to improve performance in Animate.

You can use the Paint Bucket tool to fill a vector object with the pixels of an imported bitmap. The file format most commonly associated with bitmap graphics is JPEG.

To know how to import and use bitmaps in Animate, see Importing Bitmaps in Animate.

When you embed video in Adobe Animate, all of the video file data is added to the Animate file. This results in a much larger Animate file and subsequent SWF file. The video is placed in the Timeline where you can see the individual video frames represented in the Timeline frames. Because each video frame is represented by a frame in the Timeline, the frame rate of the video clip and the SWF file must be set to the same rate.

If you use different frame rates for the SWF file and the embedded video clip, video playback will be inconsistent. Embedded video works best for smaller video clips, with a playback time of less than 10 seconds. If you are using video clips with longer playback times, consider using progressively downloaded video or streaming video using Flash Media Server.

Adobe Animate offers several ways to use sound. Make sounds that play continuously, independent of the Timeline, or use the Timeline to synchronize animation to a sound track. Add sounds to buttons to make them more interactive, and make sounds fade in and out for a more polished sound track.

There are two types of sounds in Animate: event sounds and stream sounds.

Adobe Animate Dynamic Text

  • An event sound must download completely before it begins playing, and it continues playing until explicitly stopped.
  • Stream sounds begin playing as soon as enough data for the first few frames has been downloaded; stream sounds are synchronized to the Timeline for playing on a website.
Adobe Animate Dynamic Text

Use groups to logically organize objects for easy manipulation. For example, after creating a drawing, you might group the elements of the drawing so that you can easily select and move the drawing as a whole. When you select a group, the Property inspector displays the x and y coordinates of the group and its pixel dimensions.You can edit groups without ungrouping them. You can also select an individual object in a group for editing without ungrouping the objects.

Click the link to learn how to Stack and arrange objects in Animate.

You can use the Text tool to create three types of text fields in Adobe Animate: static, dynamic, and input. All text fields support Unicode.

  • Static text fields display text characters that don't change dynamically
  • Dynamic text fields display dynamically updating text, such as game scores or user names
  • Input text fields allow users to enter text in forms or surveys

You can create horizontal text (with a left-to-right flow) or static vertical text (with either a right-to-left or left-to-right flow).

For nearly 20 years, the programming language used within Animate (Flash Professional) projects has been ActionScript. So why the current shift to JavaScript? Well, it isn’t exactly as simple as that. For one thing, Animate is not a JavaScript only application. You use JavaScript in projects which require it, such as HTML5 Canvas and WebGL… but you can still use ActionScript on projects which are to be published for Flash Player or AIR, including AIR for Android and iOS – and Adobe continues to update these runtimes. It’s important to note that Animate is not a JavaScript and web-centric application – but is rather a platform and language agnostic application for working across a variety of platforms.

In this article, we’ll examine an animated, interactive project which covers many of the basics when dealing with JavaScript in Animate projects – including interactivity, playhead control, dynamic instantiation of symbol instances, and more!

Writing JavaScript… in “Flash”?

With Animate CC (formerly Flash Professional) having the history that it does… a history made up largely of Flash and ActionScript… it may be surprising to some that not only can you write JavaScript within an Animate project – but that you’ve been able to do so for quite a number of years. Let’s have a look at the various attempts at generating JavaScript and HTML from Flash Professional previous to the tight integration we have today.

Adobe Wallaby (2011-2012)

Text

In 2011, Adobe released a beta utility application built with AIR for Desktop which converted .fla files to HTML. You would author your project using a normal ActionScript-based document type. When ready, fire up the “Wallaby” utility and convert it to HTML and JavaScript.

Figure 1: The Adobe Wallaby application.

It wasn’t very pretty… and the effort wasn’t long-lived either. What this demonstrated though, is that users wanted more from the Flash Professional application than just Flash-based content and paved the way for the more successful efforts to come.

Toolkit for CreateJS Extension (2011-2013)

With the introduction of the CreateJS set of libraries from Grant Skinner and company, users familiar with ActionScript APIs and the traditional Flash display list had something that felt very familiar. Eventually, CreateJS output was enabled in Flash Professional CS6 through a panel that allowed users to export a project to HTML5 Canvas using the CreateJS libraries.

Figure 2: The Toolkit for CreateJS panel within Flash Professional CS6.

Animate

While this was a workable solution – it remained an external extension with no true native integration… and writing the actual JavaScript within the application was a bit of a hack, as JavaScript wasn’t at all supported. Rather, you’d write any JavaScript within special comments within your ActionScript which would be interpreted through the Toolkit upon publish. Flash Professional users wanted more. We would have to wait until Creative Cloud became a reality to finally have true JavaScript integration within Flash Professional.

Complete CreateJS Integration (2013-Present)

With the release of Adobe Creative Cloud and Flash Professional CC, the application was completely rewritten to modernize the codebase and make the program more powerful than ever. This not only paved the way for users to integrate their own custom platforms through extensions, but also was the beginning of true HTML5 and JavaScript integration within Flash Professional itself.

Figure 3: The integrated HTML5 Canvas Publish Settings.

Not only do we now have CreateJS completely integrated within Animate… we also have the ability to write JavaScript natively within the application tied to frames – just like ActionScript.

Sample Project Overview

Let’s go ahead and have a look at the sample FLA document, which you can download and modify as you wish. This HTML5 Canvas document includes a good deal of JavaScript in order to perform timeline control, interaction, dynamic text assignment, and generative animation based upon MovieClip symbol instances dynamically created from the project Library. It’s a great example of some of the things you can do with CreateJS and Animate!

Figure 4: The “Bring the Rain!” project in Animate CC.

Have a look at the project and note that we have an Actions layer to hold any of our JavaScript code and a Labels layer which holds a number of labels given to specific frames. These two layers do not contain any visual content. Next, we have a Nav layer containing a number of interactive button instances. Note that each of these instances has a unique instance name provided, allowing us to wire in interactivity later on.

Figure 5: The layers within our root Timeline.

Below that, a Darken layer which contains an MovieClip symbol instance with its own internal animation. This instance will be used to switch the rain on and off. There is a Scenic layer below that, containing a Graphic symbol instance with some basic animation of hills and a cloud as well. Lastly, a Sunrise layer which is actually the only thing that is animated directly on the root Timeline.

Timeline Manipulation

To control the playback of both the root Timeline, and the internal Timelines of the different MovieClip symbol instances we are using, we will need to write some JavaScript in the Actions panel. Note that there is no need to control the playback of any Graphic symbol instance Timeline – as the Timeline of a Graphic symbol is bound frame-to-frame to that of the main Timeline.

Figure 6: The Actions layer within out Project.

With frame 1 of the Actions layer selected, open the Actions panel from the application menu by choosing Window > Actions. Notice the very first thing we do is stop the main Timeline by stating:

When you see the keyword this, it will refer to the current scope. In the case of the main Timeline, this represents the main scope of the project. If we include the following piece of code in frame 1:

and then run our project in a browser with the console exposed, we will see exactly what this represents:

Figure 7: The Google Chrome Console.

We can perform this debug function upon any object within out Animate project to help troubleshoot a problem or investigate the make-up of our objects.

Now, select the final frame of animation – frame 75. You will see the following line of code:

Instead of a simple stop() action, we are telling the playhead to move to the frame which has a label of “LoopPoint” within out Labels layer and then begin playing from that frame. This creates an effective bit of looping within the main Timeline. We can also pass a specific frame number into our gotoAndPlay() command, such as:

…which would do the exact same thing.

Figure 8: Frame Labels within the Timeline.

Using frame labels is much more flexible, however, as it allows you to shift the frames around without having to update the specific frame number in your code. You can also use commands such as gotoAndStop() and play() to effectively control the playhead.

Properties and State

Before moving on, we also set a number of state variables on frame 1. These can be seen in the following lines of code:

The first line sets the visible property of the MovieClip instance with the instance name of darkening to false. This effectively will hide the entire instance from view until we set it to true later on. The second line sets a new variable called isPlaying to the value of false. This is a boolean variable (having a state of either true or false) we will use to keep track of the current state of our interactive across the entire codebase.

We also determine the width and height of the Stage, and preserve these values within variables to access across our interactive later on. The stage.canvas object can be used to access both width and height when writing JavaScript. This is especially useful if we were to adjust the size of our Stage dynamically based upon the parent webpage or some other factor.

Dynamic Text Assignment

There is block of code in frame 1 which modifies the text values of our button labels and makes the additional modification of setting the mouseEnabled property of each internal text field to false. We want this to be set to false so that the text will not obscure action interaction between the mouse cursor and the underlying skin elements.

We can see 2 lines for the “play” button:

Two for the pause button:

And two for the “stop” button:

Each of these symbol instances is based off of the ProtoBtn MovieClip symbol in our project Library. It is actually a composite of multiple symbol and object types. As mentioned, ProtoBtn itself is a MovieClip symbol whose first layer is a dynamic text field with the instance name of btnLabel. This allows us to use the instance name of the button on the Stage, and the instance name of the text field, to dynamically assign a new text value as seen in the snippets above.

Figure 9: The ProtoBtn symbol Timeline.

Adobe Animate Canvas Dynamic Text

To provide the expected button states of up, hover, and down, we have a second layer present which includes an instance of the RealBtn Button symbol – which includes these states by default. In this manner, you can nest multiple symbol and object types together, creating complex interactive elements.

Note that we could just as easily simply use a true Button symbol with its own instance name and containing a text field in place of the RealBtn MovieClip symbol – but have chosen to create a more complicated interactive symbol in order to show how to disable certain elements from interaction with JavaScript.

Interactive Playback Controls

Here is where we wire up our interactive elements, binding specific event listeners to each symbol instance on the Timeline. We do this by using the instance names provided to each of the buttons earlier and using addEventListener to listen for a “click” event on that instance. When this event is detected, we then invoke a certain function which performs any number of tasks within our interactive.

For instance, here is the code which both adds the event listener to our playBtn instance, and invokes playClicked function which is written directly below it. Note that we also bind the current scope (as this) to the function call so that we can write code within the function body which aligns to that same scope.

Within the playClicked function, we tell the main Timeline to begin playing from the current playhead position, set the sun instance and darkening instance to play as well, and set the isPlaying boolean variable to true. We initially declared isPlaying at the top of our code stack, as it is important to keep track of the current state of the interactive across different functions.

For the pauseClicked function, we basically do the exact opposite! Telling the main Timeline to stop at the current playhead position, set the sun instance and darkening instance to stop playing, and setting the isPlaying boolean variable to false.

The stopClicked function is a bit different as it serves to re-initialize and “rewind” the interactive to the beginning. Initially telling the main Timeline to move the playhead to the frame which has a label of “BeginPoint” within our Labels layer and to then stop the playhead entirely. We then invoke a function killTheRain(), which we we see in a bit… I bet you can probably guess what that function does!

We then set the visible property of our darkening instance to false and reset the rainBtn (we’ll address this instance in the next session) text to their default values just like at the beginning of our code stack. Lastly, setting the isPlaying boolean variable back to false as well.

These three functions together compose the interactive timeline control mechanisms within this interactive.

How to… Bring the RAIN!

In the last section, we saw a few references to items like the rainBtn instance and a function called killTheRain(), neither of which have yet been addressed in this article – so let’s do that. If you’ve run the interactive at all, you’ll note that we can toggle the weather from a sunny day, to a rainy day, and back again.

Figure 10: Changing the weather is easy with Animate and JavaScript.

Before writing the functions which produce (and revoke) a rainstorm, notice that we have a fourth button in our project with the instance name of rainBtn. Along with the label text value assignment for our Timeline control buttons, we will provide a label for this button as well.

Just as we did with the Timeline control instances, we add an event listener and accompanying function to our rainBtn instance. Within the rainClicked() function itself, we first use a simple if/else statement to check whether the darkening instance is visible or not. This lets us toggle between the two weather states in our interactive.

Depending upon the current visible property value for the darkening instance, we will reverse that property, set the rainBtn label to an appropriate value for the user, and either invoke the function to create rain via bringTheRain() or to clear rain using killTheRain(). Note that the bringTheRain() function requires a number to be passed in as an argument. As we shall see, this lets us control the intensity of the rain as it determines the number of raindrops on screen.

This effectively acts as a toggle, reversing the current state of the weather and managing the button label text value for our rainBtn instance.

Rainstorm Preparation

Before setting up either the bringTheRain() or killTheRain() functions, we need to create an additional variable at the top of the code. This object will act as a container for all of the raindrops we create.

The rainField is a type of object called a Container in CreateJS. Note that we instantiate a new Container by stating createjs.Container() directly. A Container is useful for grouping a number of additional visual objects within it. We manually set the registration point of this object based upon the width of our Stage, and finally add the rainField object to the darkening instance so that its children will be visible within out project. Using the Container, we can treat all the child objects as a group, and even wipe them all out with a single command. It’s good to be organized!

Rain Generation and Evaporation

For the bringTheRain() function itself, note that the number value being passed in as an argument is exposed through this function with the identifier of raindrops, since it signifies the amount of raindrops for the function to produce. Based upon this number, we use a for loop to basically count down from that number until we hit 0. The loop then no longer runs.

Within the loop itself, we create a temporary variable (renewed with each iteration of the loop) named rainDrop. This is set to a new instance of the RainDrop MovieClip symbol from our project Library by invoking lib.RainDrop(). Note that you must set a Linkage ID within the Library panel for this to work!

Figure 11: RainDrop MovieClip symbol with Linkage ID of “RainDrop”.

Following instantiation, we set the x and y properties of our rainDrop to a random number with a min/max range. We will have a look at the random() function after going over the remainder of this loop code. After this is all set up, we just need to add the rainDrop to the rainField Container, as it isn’t yet bound to any visible Stage. We accomplish this with the addChild() method.

As mentioned previously, the CreateJS Container object type is very useful for managing child objects within it. Within the killTheRain() function, we only need to invoke the removeAllChildren() command to completely empty our rainField Container.

At the very bottom of our code is the randomization function we used within bringTheRain() to randomize x and y raindrop positions as they are instantiated from the project Library. This is a standard utility function you can use in all sorts of projects to get a random value between a chosen set of numbers.

The only thing left unexplained is the movement of our raindrops!

Rain Movement

Flash Dynamic Text Tutorial

We want our raindrops to fall in a regular cycle, and to do this we’ll take advantage of the CreateJS Ticker. To use the Ticker, we set it to fire on “tick”, which is actually the frames-per-second (FPS) of our Animate project. Since our project is set to 10FPS – the Ticker will “tick” 10 times every second. When a “tick” fires, we want the function named animLoop to run.

Within the animLoop() function, we first check to see whether the interactive is paused or playing through the isPlaying boolean variable. If this returns a value of true, we then run through a for loop and move each individual raindrop per loop iteration.

What makes this really simple to perform is our use of the rainField Container object. There is a numChildren property inherent to this object type that will report the exact number of child objects within the Container. Using the value of this property, we know exactly how many raindrops we have to move – and how many times to iterate our loop.

Within the loop itself, we create a temporary variable named rainDrop for each specific raindrop and increase its position along the y axis by 100 pixels. Seeing as how this function runs 10 times per second… the rain appears to fall very quickly!

Adobe Animate Change Dynamic Text

The final thing we do is check the position of each raindrop against the height of the Stage, adding a 50 pixel buffer to be sure the raindrop is no longer visible. Once a raindrop moves past this point, we reset its position, creating a never-ending rainstorm.

We are moving each rainDrop along the y axis by exactly 100 pixels upon each tick – but we could also use our random() function to add some variance to the storm.

Conclusion

Adobe Animate Alternatives

Yes, Animate CC is a completely platform agnostic creative application… using JavaScript alongside HTML5 Canvas remains a popular and compelling platform choice for interactive media. The native support for JavaScript within Animate is there now – robust and ready – and a joy to use!